Skip to main content
Ctrl+K

CRISTAL Documentation

  • Install
  • User Guide
  • API
  • Examples
  • GitHub
  • Install
  • User Guide
  • API
  • Examples
  • GitHub

Section Navigation

  • cristal.christoffel module
  • cristal.plotter module
  • cristal.helper_classes package
    • cristal.helper_classes.base module
    • cristal.helper_classes.incrementers module
    • cristal.helper_classes.inversion module
    • cristal.helper_classes.moment_matrix module
    • cristal.helper_classes.polynomial_basis module
    • cristal.helper_classes.regularizer module
  • cristal.utils package
    • cristal.utils.type_checking module
    • cristal.utils.utils module
  • API Reference
  • cristal.helper_classes package

cristal.helper_classes package#

This module contains helper classes for various functionalities in the CRISTAL framework. It includes base classes, incrementers classes, inversion classes, moment matrix calculations, polynomial basis classes, and regularization classes.

  • cristal.helper_classes.base module
    • BaseDetector
    • BaseIncrementer
    • BaseInverter
    • BasePlotter
    • BasePolynomialBasis
    • BaseRegularizer
    • NotFittedError
  • cristal.helper_classes.incrementers module
    • IMPLEMENTED_INCREMENTERS_OPTIONS
    • InverseIncrementer
    • ShermanIncrementer
    • WoodburyIncrementer
  • cristal.helper_classes.inversion module
    • FPDInverter
    • IMPLEMENTED_INVERSION_OPTIONS
    • InvInverter
    • PDInverter
    • PseudoInverter
  • cristal.helper_classes.moment_matrix module
    • MomentsMatrix
  • cristal.helper_classes.polynomial_basis module
    • ChebyshevT1Basis
    • ChebyshevT2Basis
    • ChebyshevUBasis
    • IMPLEMENTED_POLYNOMIAL_BASIS
    • LegendreBasis
    • MonomialsBasis
    • PolynomialsBasisGenerator
  • cristal.helper_classes.regularizer module
    • CombRegularizer
    • ConstantRegularizer
    • IMPLEMENTED_REGULARIZATION_OPTIONS
    • VuCRegularizer
    • VuRegularizer

previous

cristal.plotter module

next

cristal.helper_classes.base module

This Page

  • Show Source

© Copyright 2025, Florian Grivet.